Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration.
نویسندگان
چکیده
Organometallic complexes of the general formula [(η(6)-arene)Ru(N⁁N)Cl](+) and [(η(5)-Cp*)Rh(N⁁N)Cl](+) where N⁁N is a 2,2'-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2'-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)(+) into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD(+) (expressed as TOF) revealed that the Rh(III) complexes were much more potent catalysts than the Ru(II) complexes. Within the Ru(II) complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized Ru(II) and Rh(III) complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.
منابع مشابه
Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.
NAD(P)H-dependent oxidoreductases are valuable tools for synthesis of chiral compounds. The expense of the cofactors, however, requires in situ cofactor regeneration for preparative applications. We have attempted to develop an enzymatic system based on phosphite dehydrogenase (PTDH) from Pseudomonas stutzeri to regenerate the reduced nicotinamide cofactors NADH and NADPH. Here we report the us...
متن کاملEfficient regeneration of NADPH using an engineered phosphite dehydrogenase.
The in situ regeneration of reduced nicotinamide cofactors (NAD(P)H) is necessary for practical synthesis of many important chemicals. Here, we report the engineering of a highly stable and active mutant phosphite dehydrogenase (12x-A176R PTDH) from Pseudomonas stutzeri and evaluation of its potential as an effective NADPH regeneration system in an enzyme membrane reactor. Two practically impor...
متن کاملTransamination and Reductive Amination
Æ-Keto acids can be reductively aminated to Æ-amino acids via amino acid dehydrogenase catalysis, with NAD(P)H as cofactor. The nitrogen source for the amine functionality is ammonia, the least expensive source. Regeneration of the co-factor NAD(P)+ back to NAD(P)H is required for synthesis and is commonly afforded via formate dehydrogenase catalyzed oxidation of formate to carbon dioxide or gl...
متن کاملIn silico profiling of cell growth and succinate production in Escherichia coli NZN111
BACKGROUND Succinic acid is a valuable product due to its wide-ranging utilities. To improve succinate production and reduce by-products formation, Escherichia coli NZN111 was constructed by insertional inactivation of lactate dehydrogenase (LDH) and pyruvate formate lyase (PFL) encoded by the genes ldhA and pflB, respectively. However, this double-deletion mutant is incapable of anaerobically ...
متن کاملMechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
NAD(P)H regeneration is important for biocatalytic reactions that require these costly cofactors. A mutant phosphite dehydrogenase (PTDH-E175A/A176R) that utilizes both NAD and NADP efficiently is a very promising system for NAD(P)H regeneration. In this work, both the kinetic mechanism and practical application of PTDH-E175A/A176R were investigated for better understanding of the enzyme and to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 9 16 شماره
صفحات -
تاریخ انتشار 2011